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Abstract
We present a formulation of the quantum mechanics of an electron gas confined
to two dimensions in a strong magnetic field within the framework of the Hilbert
space of analytic functions (Bargmann’s space). Our approach extends the
representation introduced by Girvin and Jach for the ground state to arbitrary
Landau levels and to the regime of coupling between Landau levels. By
projecting out the rapid cyclotron motion, the quantum mechanics of the slow
guiding centre motion is converted into a system of coupled-channel equations
describing the coupling between Landau levels due to the (disorder) potentials.
In the limit of strong fields, the coupled-channel equations can be solved
perturbatively. For the single-channel case we derive a WKB-like quantization
condition for the one-dimensional motion along equipotential lines for arbitrary
Landau levels. Two applications of this formalism are discussed: the weak-
levitation problem in quantum Hall systems and a two-electron quantum dot in
a strong magnetic field.

PACS numbers: 71.70.Di, 73.40.Hm, 03.65.−w

1. Introduction

Electrons confined to two dimensions and subject to a perpendicular homogeneous magnetic
field B exhibit a large variety of phenomena. Among the most complex and fascinating ones
are the integer and the fractional quantum Hall effects, for which the understanding of the
characteristics of electronic wavefunctions of a disordered system in strong magnetic fields is
important. Experimental advances made it possible to observe quantum Hall plateau transitions
by decreasing the magnetic field strength [1–3] and to get access to new phenomena related to
the disappearance of the quantum Hall effect in low magnetic fields. Smaller magnetic fields
imply occupation of higher Landau levels provided that the total electron density is fixed.
While in the limit of strong fields, extended states exist at discrete energies near the centre
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of each disorder-broadened Landau level, in the limit B = 0 all single-electron states are
expected to be localized. An intriguing scenario, referred to as ‘levitation’, has been proposed
to interpolate between these two limits as B decreases [4, 5]. A description of this transition
requires the treatment of coupling between Landau levels.

The classical motion of an electron in two dimensions in the presence of a perpendicular
strong magnetic field and a smooth random potential is characterized by two separate time
scales. The rapid cyclotron period determines the short time scale proportional to 1

B
. The slow

motion corresponds to the drift motion of the electron’s guiding centre along equipotential
lines and its time scale is proportional to B. For an arbitrary potential V (x, y) , the separation
of the cyclotron motion from the drift motion in the dynamics governed by the Hamiltonian

Ĥ = ĤL + V (x, y) = 1

2me

(
p̂ − e

c
A(x, y)

)2
+ V (x, y) (1)

can only be performed approximately by adiabatic averaging over the fast motion. In turn,
the quantum equivalent is the projection onto a specific Landau level. In the absence of the
potential V , the eigenvalues of the Schrödinger equation in a homogeneous magnetic field are
the discrete, highly degenerate Landau levels [6] En = h̄ωc

(
n + 1

2

)
, where n = 0, 1, 2, . . . ,

and ωc = |eB|/(mec) denotes the cyclotron frequency. Adding a small potential V lifts the
degeneracy of the Landau levels and broadened bands develop which remain well separated
in the limit of very high B so that coupling between them can be neglected. As B is decreased,
this simple picture breaks down.

Separation of the fast cyclotron motion from the slow guiding field motion by projection
techniques was pioneered by Girvin and Jach [8] for the ground state. Wavefunctions �0

restricted to the lowest Landau level are of the form

�0(z, z̄) = e
− zz̄

4l2
B f (z) (2)

where z = x + iy, z̄ = x − iy, lB = [h̄c/|eB|]−1/2 denotes the magnetic length and f (z) is
an entire analytic function. The Hilbert space containing f (z) is referred to as the Bargmann
space [7]. Using equation (2) the two-dimensional Schrödinger equation for the Hamiltonian
of equation (1)

Ĥ�(x, y) = E�(x, y) (3)

can be transformed into a complex differential equation for f (z). The extension of this
formalism to arbitrary Landau levels is one aim of the present paper and will be discussed
in section 2, where we introduce a systematic formalism for projecting equation (3) onto an
arbitrary Landau level. The wavefunction in higher Landau levels does not have the simple
form of equation (2) but, as will be shown, can be determined completely by a single analytic
function. This makes it possible to formulate an effective complex Schrödinger equation
for higher Landau levels analogous to Girvin and Jach’s equation for the lowest Landau
level. Moreover, by projecting onto subspaces of a set of Landau levels, the two-dimensional
Schrödinger equation can be converted into a system of coupled-channel equations representing
the coupling of different Landau levels due to the potential V (x, y). For strong magnetic fields,
analytic solutions of these coupled-channel equations can be generated through a perturbative
expansion in inverse powers of B, or equivalently, in powers of the magnetic length squared
l2
B . Various approximation methods will be discussed in section 3. Within a single channel

treatment, we derive a WKB-like description for the quantization conditions of the guiding
centre motion.

As a further application we consider in section 4.1 the weak levitation problem for the
integer quantum Hall effect. We show that the effective channel potential taking into account
the coupling to other Landau levels is closely related to but not identical to the renormalized



Bargmann representation for Landau levels in two dimensions 4175

potential introduced by Haldane and Yang [9] and provides the leading-order contribution to
weak levitation.

In section 4.2 we apply the present formulation to calculate the energy spectrum of a two-
electron quantum dot, where electron–electron correlations become important. For a harmonic
potential V (x, y) the two-electron Schrödinger equation in a homogeneous magnetic field is
separable. This allows the validity of the perturbative expansion in powers of the inverse
magnetic field strength for a Coulomb interacting system to be tested.

A few technical details will be given in the appendix. We use atomic units (h̄ = |e| =
|me| = 1) throughout.

2. Hilbert space of analytic functions for the Landau problem

2.1. Single Landau level

We consider in the following the two-dimensional Schrödinger equation for a non-interacting
electron gas in a strong homogeneous magnetic field (with the Hamiltonian of equation (1))
for which we use in the following the symmetric gauge

�A(x, y) = − 1
2 (�r × �B). (4)

The static potential V (x, y) is assumed to possess a convergent power series expansion in x
and y or, equivalently, in z and its complex conjugate z̄, but is otherwise arbitrary. Following
Girvin and Jach [8], we map the kets |�〉 onto the Hilbert space of entire analytic functions
(the Bargmann space [7]) f with the scalar product

〈f |g〉 =
∫

dµ(z)f (z)g(z) (5)

and measure

dµ(z) = 1

2πl2
B

dx dy e−|z|2/2l2
B . (6)

Multiplying z̄ with an element of the Bargmann space, z̄g(z), yields a ket |z̄g〉 that is not
an element of the Bargmann space. Nevertheless, the scalar product 〈f |z̄g〉 is well defined
because of

〈f |z̄g〉 = 〈zf |g〉 =
〈
f

∣∣∣∣2l2
B

d

dz
g

〉
(7)

suggesting the replacement of all complex conjugates z̄ by differential operators 2l2
B

∂
∂z

in
Bargmann space. In view of the commutator,[

l2
B

d

dz
, z

]
= l2

B (8)

which is equivalent to that of boson ladder operators, the potential function V (x, y) = V (z, z̄)

becomes now a function of non-commuting operators in the Bargmann space, which requires
a prescription for operator ordering. We will show below that our projection approach
automatically yields the correct operator ordering which turns out to be normal ordering
(in the terminology of [8]) denoted by colons, :V

(
z, 2l2

B
d
dz

)
:, with the understanding that all

derivative operators are kept to the left of the complex variable z. We note that in view of
the commutation rule (equation (8)) and the correspondence

(
a† ↔ z, a ↔ d

dz

)
this would

correspond to anti-normal ordering for boson ladder operators in the context of field theory.
Determination of an effective Schrödinger equation for the electronic motion in the nth

Landau level involves the projection

|�n〉 = P̂ n|�〉 (9)
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where

P̂ nHLP̂ n = 2n + 1

2
ωcP̂ n. (10)

Application to equation (3) leads to an effective single-channel Schrödinger equation

P̂ nV |�n〉 =
(

E − 2n + 1

2
ωc

)
|�n〉 = En|�n〉 (11)

where we defined En = E − 2n+1
2 ωc to simplify notation. Physically, this corresponds to

the Schrödinger equation for the motion of the guiding centre upon adiabatic elimination of
the (fast) cyclotron motion. Equation (11) is an acceptable approximation only if a sizeable
disparity in time scales between the cyclotron motion and the guiding centre motion exists,
i.e. the B field is sufficiently large and coupling to other Landau levels can safely be neglected.

Transformation of equation (11) into the Bargmann representation requires an explicit
representation of the projector P̂n. The matrix representation of the projection operator can be
determined from the residue of the pole of the Green’s function in a homogeneous magnetic
field [10] pertaining to the energy eigenvalue of the nth Landau level as

Pn(z, z̄, ξ, ξ̄ ) = 〈z|Pn|ξ〉 = 1

2πl2
B

Ln

(
1

2l2
B

|z − ξ |2
)

e
− 1

4l2
B

(zz̄−2zξ̄+ξ ξ̄ )
(12)

where Ln denotes the Laguerre polynomial of degree n. The projected Schrödinger equation
(equation (11)) reads in the position representation∫

dξ dξ̄Pn(z, z̄, ξ, ξ̄ )V (ξ, ξ̄ )�n(ξ, ξ̄ ) = En�n(z, z̄). (13)

The wavefunction �n(z, z̄) in equation (13) is no longer of the simple form of equation (2).
Instead, the wavefunction within the subspace of the nth Landau level has the general
form [11]

�n(z, z̄) = (fn,0(z) + fn,1(z)z̄ + fn,2(z)z̄
2 + · · · + fn,n(z)z̄

n) e
− 1

4l2
B

zz̄
(14)

where the fn,i(z), i = 0, . . . , n, denote a set of entire analytic functions. The functions fn,i

are not independent of each other but can be generated from the single analytic function
fn,n(z) := fn(z). By definition, the wavefunction of the nth Landau level must satisfy
the eigenvalue equation of the projector P̂ n�n = �n. With the explicit form of the
matrix representation (equation (13)) of the projection operator and the general form of
the wavefunction (equation (14)), this condition yields

n∑
i=0

1

2πl2
B

∫
dξ dξ̄ e

− 1
2l2

B

ξ̄(ξ−z)
(−1)i

(
n

i

)
1

i!

(
1

2l2
B

(z − ξ)(z̄ − ξ̄ )

)i

× (fn,0(ξ) + fn,1(ξ)ξ̄ + · · · + fn,n(ξ)ξ̄ n) = fn,0(z) + · · · + fn,n(z)z̄
n. (15)

Comparing the terms of different order in z̄ yields a system of (n + 1)-coupled differential
equations for m = 0, . . . , n

n∑
i=m

1

2πl2
B

∫
dξ dξ̄ e

− 1
2l2

B

ξ̄(ξ−z) (−1)i

i!

(
n

i

)(
1

2l2
B

)i

(z − ξ)i
(

i

m

)
(−ξ̄ )i−m

× (fn,0(ξ) + · · · + fn,n(ξ)ξ̄ n) = fn,m(z). (16)

The factor e
− 1

2l2
B

ξ̄(ξ−z)
in equation (16) is the so-called principal vector which plays the role of

the Dirac δ(z − ξ) function in Bargmann space [7]. In the appendix we prove the important
equality (a generalization of Bargmann’s integral equation (A.2))

1

2πl2
B

∫
dξ dξ̄ e

− 1
2l2

B

ξ̄(ξ−z)
V (ξ, ξ̄ )F (ξ, z) = :V

(
ξ, 2l2

B

d

dξ

)
: F(ξ, z)|ξ=z (17)
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which enables us to transform the integral equation (16) into the following differential equation:
n∑

i=m

(−1)mn!

i!(n − i)!m!(i − m)!

n∑
l=0

(
2l2

B

)−m+l

[(
∂

∂ξ

)i−m+l

(z − ξ)ifn,l (ξ)

]
ξ=z

= fn,m. (18)

Further algebraic manipulations lead to the following recursion formula for fn,m(z),
n∑

i=m

(
n
i

) (
i
m

)
(−1)i+m

n∑
l=m+1

(
2l2

B

)l−m
(
i − m + l

i

)( ∂

∂z

)l−m

fn,l(z) = fn,m(z) (19)

with initial value fn,n(z) =: fn(z) and m = 0, 1, . . . , n − 1. It can be proved by complete
induction that the functions fn,m are explicitly given by

fn,m = (−2l2
B

)n−m
(
n
m

)( ∂

∂z

)n−m

fn(z) m = 0, 1, . . . , n − 1. (20)

Consequently, the generalization of equation (2) reads

�n(z, z̄) = e
− 1

4l2
B

zz̄
n∑

m=0

(−2l2
B

)n−m
(
n
m

)( ∂

∂z

)n−m

fn(z)z̄
m. (21)

Similarly, the Bargmann representation of the channel potential takes on a more complicated
structure and depends on the channel index n. In order to determine its explicit form, we insert
equation (21) into equation (13) which leads to

1

2πl2
B

∫
dξ dξ̄ e

− 1
2l2

B

ξ̄(ξ−z) (−1)n

n!

(
1

2l2
B

(z − ξ)

)n

V (ξ, ξ̄ )

n∑
m=0

(−2l2
B

)m (n
m

) ∂mfn(ξ)

∂ξm
ξ̄n−m

= Enfn(z). (22)

Employing now our assumption that the potential V(z, z̄) can be expanded in a series of positive
powers of z and z̄, this integral equation can be transformed into a differential equation for the
Bargmann state fn(z), in analogy to equation (16), by applying equation (A.4)

(−1)n

n!

n∑
m=0

(−1)m
(

n

m

)
:

(
∂

∂ξ

)n−m

V

(
ξ, 2l2

B

∂

∂ξ

)
: (z − ξ)n

∂mfn(ξ)

∂ξm

∣∣∣∣
ξ=z

= Enfn(z). (23)

In the special case of the lowest Landau level n = 0, equation (23) reduces to

:V

(
z, 2l2

B

∂

∂z

)
: f0(z) =

(
E − ωc

2

)
f0(z) (24)

which agrees with the result first given by Girvin and Jach [8]. For an arbitrary Landau level
n, equation (23) can be written in analogy to equation (24) as

:Vn

(
z, 2l2

B

∂

∂z

)
: fn(z) =

(
E − 2n + 1

2
ωc

)
fn(z) = Enfn(z). (25)

Vn(z, z̄) denotes the effective potential for the nth Landau level and can be proved by the
method of complete induction to be

Vn(z, z̄) =
n∑

m=0

(
2l2

B

)m (n
m

) 1

m!

∂2mV

∂zm∂z̄m
. (26)

Equation (25) plays the role of an effective Born–Oppenheimer-like Schrödinger equation for
the adiabatic motion of the guiding centre for an arbitrary Landau level when the coupling
to other Landau channels can be neglected. The cyclotron motion is thereby adiabatically
eliminated. The Schrödinger equation in two dimensions is reduced, after projection onto a
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single Landau level, to a quasi one-dimensional problem of the motion along equipotential
lines. The two position coordinates of the electron are replaced by the coordinates of its
guiding centre which, however, do not commute. The important point to be noted is that the
adiabatic channel potential (equation (26)) agrees with the original bare potential only for the
lowest Landau level (equation (24)), while it contains magnetic-field-dependent corrections
for higher Landau levels.

2.2. Subspace of several Landau levels

Mixing effects between Landau levels correspond to non-adiabatic corrections (or non-Born–
Oppenheimer effects in the language of molecular dynamics) to the effective Schrödinger
equation (equation (25)). They can be described in terms of coupled-channel equations
describing the dynamical coupling between different adiabatic channels due to the coupling
by the potential V . The coupled-channel equations can be derived by projecting equation (3)
onto a subspace (0, n) spanned by the Landau levels i = 0, . . . , n

P̂ (0,n) =
n∑

i=0

P̂ i . (27)

Accordingly,

P̂ (0,n)|�〉 :=
n∑

i=0

P̂ i|�〉 =
n∑

i=0

|�i〉. (28)

With equations (21), (27) and (12), the projected Schrödinger equation for i = 0, 1, . . . , n
n∑

j=0

P̂ iV |�j 〉 = Ei|�i〉 (29)

reads in the position representation

1

2πl2
B

∫
dξ dξ̄Li

( |z − ξ |2
2l2

B

)
e

−ξ̄ (ξ−z)

2l2
B

n∑
j=0

j∑
m=0

(
j

m

)(
−2l2

B

∂

∂ξ

)j−m

fj (ξ)ξ̄mV (ξ, ξ̄ )

= Ei

i∑
m=0

(−2l2
B

)i−m

(
i

m

)(
∂

∂z

)i−m

fi(z)z̄
m. (30)

Using equation (A.4), this system of coupled integral equations can be transformed, similar to
the previous case of a single Landau level, into a system of coupled differential equations. For
simplicity, we give the result only for the three-dimensional subspace spanned by the lowest
Landau levels n = 0, 1 and 2. The matrix representation of the system of coupled differential
equations (equation (30)) reads


:V : + ωc

2 2l2
B :∂V

∂z
: 4l4

B :∂
2V

∂z2 :

:∂V
∂z̄

: 2l2
B : ∂2V

∂z̄∂z
: + :V : + 3ωc

2 4l4
B : ∂3V

∂z̄∂z2 : + 4l2
B :∂V

∂z
:

1
2 :∂

2V
∂z̄2 : l2

B : ∂3V
∂z̄2∂z

: + :∂V
∂z̄

: 2l4
B : ∂4 V

∂z̄2∂z2 : + 4l2
B : ∂2V

∂z̄∂z
: + :V : + 5ωc

2




f0

f1

f2


 = E


f0

f1

f2


 .

(31)

Extensions to higher dimensional subspaces are straightforward but increasingly cumbersome.
The diagonal elements of equation (31) correspond to the adiabatic single-channel Schrödinger
equations (equation (25)) for the one-dimensional motion of the guiding centre on equipotential
lines. The off-diagonal elements describe the coupling between different adiabatic channels,
i.e. the coupling between the cyclotron motion and the guiding centre motion, thereby restoring
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the full dimensionality of the original problem. Equation (31) closely resembles a system
of coupled-channel equations in scattering theory. One important observation connected
with equation (31) is that the coupling strength between the ith and the jth Landau level
scales with the magnetic length as l

2|i−j |
B , i.e. rapidly decreases for levels farther apart in

the high-field regime (lB → 0). In general, equation (31) can be solved only numerically.
However, because of the rapid fall-off of the off-diagonal elements approximate solutions can
be generated perturbatively in the limit of large B fields, which we will discuss in the following
section. For the particular case of a polynomial potential such as harmonic and anharmonic
potentials or saddle point potentials, the off-diagonal matrix elements for |i − j | > m vanish,
where m denotes the degree of the polynomial. The matrix reduces to a banded matrix, and
the problem becomes formally equivalent to a tight-binding problem.

3. Approximate solutions

3.1. Semiclassical quantization of the single-channel equation

In the limit of large magnetic fields, the mixing of different Landau levels can be ignored.
All off-diagonal elements in equation (31) can be neglected, and the problem is reduced to
solving the decoupled one-dimensional Schrödinger equation (25). The magnetic length lB
becomes small compared to any other scale of the problem; therefore, l2

B can take the role
of an effective h̄ → 0 in a WKB-like ‘semiclassical’ description. Voros [12] developed a
conventional WKB approximation in the Bargmann representation with z = (x − ip)/

√
2

and h̄ as expansion parameter. The present strong-field WKB approach is different in that the
Hamiltonian associated with the kinetic energy of a particle has been adiabatically eliminated
in equations (25) and (31). The de Broglie wavelength λ no longer provides the characteristic
scale of the problem but is replaced by lB . The dimensionless order parameter of our expansion
will be lB/L, where L is the characteristic length over which the potential V changes by an
amount of the order of the magnetic energy h̄ωc. The high magnetic field limit in the single
Landau level approximation will become valid when lB/L � 1, in other words when the
potential landscape changes slowly on the scale of the magnetic length. As in the WKB
method, we rewrite the wavefunction as fn(z) = exp

[
iS(z)
/
l2
B

]
in terms of an ‘action’ S(z),

which we expand in a power series of l2
B

S(z) = S0(z) +
l2
B

i
S1(z) +

(
l2
B

i

)2

S2(z) + · · · . (32)

In order to determine the operation of :Vn

(
z, 2l2

B
∂
∂z

)
: on the wavefunction fn(z), we employ

the Fourier transform of the potential Ṽn(k, l) = ∫ dx
∫

dyVn(x, y) exp [−i(kx + ly)] with
respect to the real space variables x = 1

2 (z + z̄) and y = 1
2i (z − z̄), so that

:Vn

(
z, 2l2

B

∂

∂z

)
: = 1

2π

∫
dk dl Ṽn(k, l) :eik(z+2l2

B ∂z)/2 el(z−2l2
B∂z)/2:

= 1

2π

∫
dk dl Ṽn(k, l) e(ik−l)l2

B∂z e(i k
2 + l

2 )z. (33)

Inserting the WKB ansatz equations (32) and (33) into the Schrödinger equation of the nth
Landau level (equation (25)) and expanding the exponential function leads to

1

2π

∫
dk dl Ṽn(k, l)

[
1 +
(
ikl2

B − ll2
B

)
∂z +

1

2

(
ikl2

B − ll2
B

)2
∂2
z + · · ·

]

×
[
ei k

2 z+ l
2 z e

i
l2
B

S0(z)+S1(z)+
l2
B
i S2(z)+···] = En e

i
l2
B

S0(z)+S1(z)+
l2
B
i S2(z)+···

. (34)
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After taking the derivatives we find to zeroth order in l2
B (this requires the summation of all

terms of the order O(1))

1

2π

∫
dk dl Ṽn(k, l) ei k

2 z+ l
2 z e(ik−l)iS′

0 = En. (35)

This equation can be transformed to

Vn

(
x =
( z

2
+ iS′

0

)
, y =

(
−i

z

2
− S′

0

))
= Vn(z, z̄ = 2iS′

0(z)) = En. (36)

Equation (36) defines equipotential lines of energy En = E − ωc

(
n + 1

2

)
. For S′

0(z) we,
therefore, find

S′
0(z) = 1

2i
z̄E(z) (37)

where z̄E(z) is implicitly defined by the equation

Vn(z, z̄E(z)) = En. (38)

Leading-order l2
B corrections are represented by the first-order corrections S1(z). After some

straightforward manipulations we find for S1(z) the differential equation

S′
1 =
(

∂Vn

∂z̄
(z, 2iS′

0)

)−1

·
(

−∂2Vn

∂z∂z̄
(z, 2iS′

0) − iS′′
0 (z)

∂2Vn

∂z̄2
(z, 2iS′

0)

)
. (39)

The domains on which the differential equations for S′
0 and S′

1 (equations (37) and (39)) are
defined are the equipotential lines of V pertaining to fixed energy, i.e. are one-dimensional
manifolds in the two-dimensional configuration space. If we now require that V , in addition
to the expansion in a series of positive powers of z and z̄, possesses a non-vanishing gradient
everywhere on the equipotential line, S′

0 and S′
1 are holomorphic functions on a strip containing

the equipotential line. A non-vanishing gradient implies that on the equipotential line the
potential V does not have an extremum or a saddle. In particular, equipotential lines form
closed curves which do not intersect with themselves. Unlike the Schrödinger representation,
where quantization is achieved by imposing square-integrability of the wavefunction, in
the Bargmann representation it is the analyticity of the wavefunction which determines the
eigenvalues [12, 13]. In particular, the WKB wavefunction has to be single valued on the
equipotential curve. Therefore, the phase of the wavefunction has to vary by multiples of 2π

when we complete a loop around the closed potential line∮
d Im[ln f (z)] = Im

(∮
f ′(z)
f (z)

dz

)
= 2πk k = 0, 1, 2, 3 . . . . (40)

As an element of Bargmann’s space, f (z) has to be an analytic function. The integral∮ d ln f (z)

dz
dz yields 2π i times the number of zeros of f (z) in the interior of the closed

equipotential line [14]. The integral
∮ d ln f (z)

dz
dz, therefore, is purely imaginary and the

quantum number k is positive or zero. The quantization condition can be alternatively written
as
1

i

∮
f ′(z)
f (z)

dz = 1

i

[
1

l2
B

∮ (
iS′

0 + l2
BS′

1(z)
)]

dz = 2kπ k = 0, 1, 2, . . . . (41)

The important point is now that the analytic continuation of S′
0 and S′

1 beyond the strip
containing the equipotential curve may feature poles. The latter give non-zero contributions to
the WKB quantization conditions. The first integral, i

l2
B

∮
S′

0(z) dz = 1
2l2

B

∮
z̄E(z) dz, measures

the area enclosed by the equipotential curve in units of l2
B , in analogy to the classical action

(the phase-space area in units of h̄) in the ordinary WKB approach. It should be noted
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that in the Bargmann representation with normal operator ordering, the second integral
−i
∮

S′
1(z) dz generally does not reduce to a winding number as is the case for symmetric

(Weyl) operator ordering, where −i
∮

S′
1(z) dz = i

2

∮
d
(

ln ∂Vn

∂z̄

)
[12]. In the latter case the

winding number of the function ∂Vn

∂z̄
completely accounts for the Maslov correction [12, 13].

The key point is that identification of the Maslov corrections is different for different operator
ordering prescriptions. The transformation from symmetric to normal ordering accounts for
part of the Maslov correction, while the residual part stems from the second phase integral
−i
∮

S′
1(z) dz [12]. Equation (41) represents, to our knowledge, the first derivation of the

quantization condition for the guiding centre motion in the strong B-field limit in the Bargmann
representation. Previous approaches of semiclassical quantization of the guiding centre motion
[15, 16] used coherent state path integral techniques, leading to similar but not identical
quantization conditions.

Let us illustrate the quantization rule with the simple case of a harmonic potential, i.e.
V = ω2

2 zz̄. The effective single-channel potential according to equation (26) is Vn = ω2

2 zz̄ +
nl2

Bω2. From equations (37) and (39) we find

S′
0(z) = 1

2iz

(
E − 2n + 1

2
ωc − nl2

Bω2

)
(42)

S′
1(z) = −1

z
. (43)

Both functions have single poles at z = 0, i.e. outside any equipotential line. Therefore the
quantization condition (equation (41)) yields

En,k = 2n + 1

2
ωc +

ω2

ωc

(
n + k +

α

4

)
with α = 4. (44)

These WKB eigenenergies can be shown to be equal to the expansion of the exact energies of
the Landau levels in the presence of an additional isotropic harmonic perturbation (∝ ω2) to
first order in

(
ω
ωc

)2
. The wavefunction in Bargmann space pertaining to the energy En,k is of

the form fn,k(z) = zk. The Maslov index of the guiding centre motion counting the number
of turning points in two dimensions is α = 4: the guiding centre propagates along a circle in
the x–y plane, and the velocity components in the x and y directions each change their sign
twice on a complete loop.

3.2. High field limit of coupled channel equations

The problem of Landau level mixing was recently analysed by Haldane and Yang [9] within the
framework of a renormalized potential VR

n in a given Landau level n,which takes perturbatively
into account coupling effects to other Landau levels. With such a potential, it should be possible
to represent within the truncated Hilbert space of Landau level n the effects of the coupling
to other levels. Since the present treatment (equation (30)) allows for the direct treatment of
channel coupling, it is instructive to compare the two approaches.

In the lowest order perturbation theory, the energy of the system in a given Landau level
n can be simply calculated by the matrix element of the potential in the nth Landau level

E 
 2n + 1

2
ωc + 〈n|V |n〉 (45)

where |n〉 represents the basis state of the Hilbert space belonging to the nth Landau level. The
energies calculated by equation (45) are obviously the eigenenergies calculated by the single-
channel equation (equation (25)), which can be easily verified by noting that the projection
operator onto the nth Landau level is P̂ n = |n〉〈n|.
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In order to account for mixing effects with other Landau levels, the bare potential V in
equation (45) was replaced in [9] by the renormalized potential V R

n , so that the energy was
given by E 
 2n+1

2 ωc + 〈n|V R
n |n〉. Up to order O(B−3), the renormalized potential V R

n reads
in terms of the bare potential V in the complex-coordinate representation

V R
n (z, z̄) = V (z, z̄) − 2l2

B

ωc

∂V

∂z

∂V

∂z̄
+ 6

(
n +

1

2

)
l4
B

ωc

∂2V

∂z2

∂2V

∂z̄2
+ O
(
l8
B

)
. (46)

Since for the single-channel case the energies calculated by equation (45) are equivalent to
eigenenergies calculated by equation (25), it is tempting to assume that, in order to account for
Landau level coupling effects, the renormalized potential for Landau level n (equation (46))
can serve, upon normal ordering, as the bare potential of the effective Schrödinger equation
of the nth Landau level (equation (25)), so that

:V eff
n

(
z, 2l2

B

∂

∂z

)
: fn(z) =

(
E − 2n + 1

2
ωc

)
fn(z) (47)

where the effective potential including coupling effects is given by

V eff
n (z, z̄) =

n∑
m=0

(
2l2

B

)m (n

m

)
1

m!

∂2mV R
n (z, z̄)

∂zm∂z̄m
. (48)

We will show that the perturbative solution of our system of coupled differential equations (30)
leads to precisely the same effective potential (equation (48)), thereby proving the validity of
our assumption.

The differential matrix equation (equation (31)) is expanded perturbatively in orders of l2
B

in order to calculate the effective potential of the Landau levels n = 0, 1 including coupling
effects to higher Landau levels. Focusing first on n = 0, the coupling from higher Landau
levels will result in a small admixture of wavefunctions of higher Landau levels fi, i = 1, 2,
which will be at least one order of magnitude in l2

B smaller than f0. The first row of the matrix
equation (31) reads

:V : f0(z) + 2l2
B :

∂V

∂z
: f1(z) + 4l4

B :
∂2V

∂z2
: f2(z) =

(
E − ωc

2

)
f0(z). (49)

To leading order the admixture of f1 and f2 are given (according to the second and third rows
of equation (31)) by

f1(z) 
 −l2
B :

∂V

∂z̄
: f0(z) (50)

f2(z) 
 − l2
B

4
:
∂2V

∂z̄2
: f0(z). (51)

Introducing these expressions into equation (49) we get

:V : f0(z) − 2l2
B :

∂V

∂z
::
∂V

∂z̄
: f0(z) − l6

B :
∂2V

∂z2
::
∂2V

∂z̄2
: f0(z) =

(
E − ωc

2

)
f0(z). (52)

In equation (52) the operator product of two normal-ordered operators appears. The operator
product :A

(
z, 2l2

B∂z
)
::B
(
z, 2l2

B∂z
)
: is in general not equal to :AB

(
z, 2l2

B∂z
)
:. The difference

can be calculated straightforwardly in expanding A and B in a power series of z and z̄ and
reads

:A::B: = :AB: − 2l2
B :

∂A

∂z

∂B

∂z̄
: + O

(
l4
B

)
. (53)
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Applying equation (53) to the operator product :∂V
∂z

::∂V
∂z̄

: and noting that :∂
2V

∂z2 ::∂
2V

∂z̄2 : = :∂
2V

∂z2
∂2V
∂z̄2 : +

O
(
l2
B

)
equation (52) becomes

:V : f0(z) − 2l4
B :

∂V

∂z

∂V

∂z̄
: f0(z) + 3l6

B :
∂2V

∂z2

∂2V

∂z̄2
: f0(z) =

(
E − ωc

2

)
f0(z). (54)

The effective potential in the lowest Landau level including coupling effects to higher Landau
levels up to order O

(
l6
B

)
can, therefore, be identified as

V eff
0 = V − 2

l2
B

ωc

∂V

∂z

∂V

∂z̄
+ 3

l4
B

ωc

∂2V

∂z2

∂2V

∂z̄2
. (55)

This effective potential agrees with the renormalized potential equation (46) for n = 0. Note
that for n = 0 no additional correction terms arise from the transformation to the effective
channel potential (equation (48)). The extension to the Landau level n = 1 is straightforward.
To this end we extend the matrix equation (equation (31)) to n = 3. Up to order O

(
l6
B

)
coupling effects the second row of the extended matrix equation (31) yields

:
∂V

∂z̄
: f0 + 2l2

B :
∂2V

∂z̄∂z
: f1 + :V : f1 + 4l4

B :
∂3V

∂z̄∂z2
: f2 + 4l2

B :
∂V

∂z
: f2 + 12l4

B :
∂2V

∂z2
: f3

=
(

E − 3ωc

2

)
f1. (56)

Proceeding along similar lines as above equation (56) yields to O
(
l6
B

)
,

:V eff
1

(
z, 2l2

B

∂

∂z

)
: f1 =

(
E − 3

2
ωc

)
f1 (57)

with

V eff
1 := V + 2l2

B

∂2V

∂z̄∂z
− 2

l2
B

ωc

∂V

∂z̄

∂V

∂z

− 4
l4
B

ωc

(
∂2V

∂z̄∂z

∂2V

∂z̄∂z
+

∂3V

∂z̄∂z2

∂V

∂z̄
+

∂3V

∂z̄2∂z

∂V

∂z

)
+ 5

l4
B

ωc

∂2V

∂z̄2

∂2V

∂z2
(58)

which is the effective potential in the Landau level n = 1 including coupling effects to
other Landau levels. Note that equation (58) is not identical to the renormalized potential
equation (46). However, using the renormalized potential (equation (46)) as the bare potential
in transformation equation (48), complete equivalence is achieved. In other words, for all
n � 1 the correction terms resulting from equation (48) are essential in order to establish
equivalence.

4. Applications

4.1. The weak levitation of extended states—Landau level mixing effects near the saddle point

We apply the present method to the problem of the weak levitation of extended states in
the integral quantum Hall effect. The starting point is the network model of Chalker and
Coddington [17]. In this approximation the disorder is modelled by a random pattern of
smooth equipotential contours. Different closed random contours of the same energy are
separated from each other by potentials that can be locally approximated by saddle point
potentials. Within the framework of percolation theory, states become extended when the
energy reaches a critical energy EC of the saddle point. For this energy the coefficient for
transmission through the saddle reaches the value 1

2 . We consider therefore the saddle point
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(SP) potential VSP = −	2

2 (x2 − y2), where 	2 is a parameter describing the strength of the
saddle. In complex coordinates representation, VSP reads

VSP = −	2

4
(z2 + z̄2). (59)

VSP serves as the representative of the local disordered potential which is only valid for
distances that are within the correlation length d of the potential, i.e.√

x2 + y2 < d (60)

and, furthermore, for which the quadratic approximation (equation (59)) holds. The effective
potential of the saddle point including mixing effects is according to equation (48) up to order
O
(
l6
B

)
given by

V eff
n SP = −	2

4
(z2 + z̄2) − l4

B	4

2
z̄z +

l6
B	4

4
(2n + 3). (61)

In addition to the bare saddle point potential two terms appear: a term ∝ z̄z corresponds to
an inverted harmonic oscillator

(∼l4
B

)
which squeezes the saddle potential in the unstable

direction, while it widens it in the stable direction, as can be seen from its Cartesian
representation

V eff
n SP = −	2

2

(
1 + l4

B	2) x2 +
	2

2

(
1 − l4

B	2) y2 +
l6
B	4

4
(2n + 3). (62)

The second correction term in equation (62) resulting from the coupling to other Landau levels
leads to an upward shift ∝ l6

B . In the following, we will show that squeezing together with
the positive energy shift of the saddle point of the order l6

B results in an upward shift of the
critical transmission energy of 1

4 l6
B	4(2n + 1) relative to the Landau energy. This corresponds

to a levitation of the energy of extended states to order B−3. The single-channel Schrödinger
equation (47) reads for the saddle point potential

−	2

4
z2fn(z) − l4

B	2f ′′
n − l4

B	4zf ′
n +

l6
B	4

4
(2n − 1)fn = Enfn. (63)

Using the ansatz fn = f̃ n exp
(−1

4	2l2
Bz2
)

and neglecting terms of the order O
(
l8
B

)
we get

−	2

4
z2f̃ n(z) − l4

B	2f̃ ′′
n =
(

En − l6
B	4

4
(2n + 1)

)
f̃ n. (64)

This is the Schrödinger equation for an inverted harmonic oscillator. Therefore, the problem
can be reduced to that of the transmission through a quadratic potential barrier along the real
axis [18]. Accordingly, the transmission coefficient reaches the critical value 1

2 at the critical
energy EC given by the zero of the effective eigenvalue (right-hand side of equation (64)),

EC = 2n + 1

2
ωc +

l6
B	4

4
(2n + 1). (65)

EC is shifted upwards relative to the centre of the Landau band, 1
2 (2n + 1)ωc, by an amount of

the order of + 1
4 l6

B	4(2n+1), which represents the dominant contribution to the weak levitation
to order l6

B ∝ B−3.
It is, furthermore, instructive to analyse the origin of various contributions to the energy

shift for the levitation with the help of the coupled-channel equations (30) in more detail.
Because of the quadratic form of the potential, the calculation of the effective channel
equations (30) is particularly simple. For the nth channel they read

−	2

4
fn−2(z) − l2

B	2f ′
n−1(z) − 	2

4
z2fn(z) − l4

B	2f ′′
n (z)

− l2
B	2(n + 1)zfn+1(z) − l4

B	2(n + 2)(n + 1)fn+2(z) = Enfn(z). (66)
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Equation (66) represents the nth row of the matrix representation of the system of coupled-
channel equations (31). In the special case of the saddle point potential this matrix is banded
with a width of 
n = ±2. More generally, coupling strength decreases as B−|
n|. The main
contribution of level mixing for a Landau level n is, therefore, the coupling to Landau levels
n − 2, n − 1, n + 1 and n + 2. fn implicitly depends on fn+3 (fn−3) through fn+1 and fn+2

(fn−1, fn−2): this will, however, result in corrections of higher order in lB . The coupling
of a given Landau level of index n to its nearest neighbours with quantum numbers n − 1
and n + 1 results in the squeezing of the saddle point potential. In addition, coupling to the
next-to-nearest neighbours, the Landau levels of the indices n−2 and n+2, has to be taken into
account. Their effect turns out to be an energy shift of the order of l6

B of the saddle point energy.
We find that in order to calculate the levitation effect, coupling to the four nearest neighbours
has to be taken into account. This highlights the fact that it is not necessarily the coupling to
the two nearest neighbours which accounts for the leading-order mixing corrections.

4.2. Two electrons in a parabolic quantum dot

In this section, we present one further application that goes beyond the level of the non-
interacting electron gas and which addresses the description of electron–electron correlations
in the limit of large B-fields. To this end, we consider the problem of two electrons interacting
via Coulomb interaction and subject to a homogeneous magnetic field B in the z-direction in
the presence of an additional harmonic confining potential V = m

2 ω2�r2. This problem of a
parabolic quantum dot in a strong magnetic field is exactly solvable due to its separability in
centre-of-mass and relative coordinates. By comparing the exact solution with the perturbative
expansion in B−1 of section 3.2, the convergence of the perturbation series in the presence of
electron–electron correlations can be tested.

The Hamiltonian for the two-dimensional system expressed in terms of centre-of-mass
coordinates �RCM = 1/2(�r1 + �r2)

(�rT
i = (xi, yi)

)
and relative coordinates �r = �r1 − �r2 reads

Ĥ = ĤCM + Ĥ rel = 1

2M

[
�̂pCM − e

c
�ACM

]2
+

M

2
ω2 �R2

CM

+
1

2mrel

[
�̂prel − e

c
�Arel

]2
+

mrel

2
ω2�r2 +

e2

|�r| (67)

where M = 2meff,mrel = meff
2 (meff is the effective electron mass in au), �AT

CM =
−BCM/2(−YCM,XCM), BCM = 2B, �AT

rel = −Brel/2(−y, x) and Brel = B/2. The centre-of-
mass part of the Schrödinger equation can be solved exactly by reduction to a two-dimensional

harmonic oscillator with the renormalized frequency ω̃CM = 1
2

√
4ω2 + ω2

c,CM [25]. The

relative motion of the system can also be treated exactly. The magnetic field dependence

leads to a renormalized frequency ω̃rel = 1
2

√
4ω2 + ω2

c,rel. The resulting problem can be
solved analytically for a denumerably infinite set of oscillator frequencies [24], while it can
be reduced to a one-dimensional quadrature for other frequencies. The potential governing
the relative motion reads in the complex representation

Vrel(z, z̄) = mrel

2
ω2zz̄ +

1√
zz̄

. (68)

To simplify notation we drop the index ‘rel’ in the coordinates and in other quantities of
the internal system in the following. As discussed in section 3.2 the perturbative approach
fixes the smallest characteristic length of the system to be the magnetic length l2

B . Additional
potentials are required to be smooth and slowly varying on that scale. The singularity of the
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Coulomb potential as r → 0 violates this constraint. One can, instead, employ a magnetically
shielded Coulomb potential

V (z, z̄) = mrel

2
ω2zz̄ +

1√
zz̄ + αl2

B

(69)

in analogy to atomic systems in strong B-fields [21], where the parameter α � 0 controls the
effective shielding. For α = 1 the Coulomb potential is quenched on the scale of the magnetic
length while for α = 0 the pure Coulomb potential emerges. For α > 0, an exact solution can
only be found by numerical quadrature. The size of the shielding length plays a crucial role
in controlling the convergence of the perturbation series.

To calculate the effective potential of a given Landau level n taking into account coupling
to other levels, V has to be normalized according to equation (46) which yields

V R
n = Vee + VA + VB + VC + VD + O(B−4) (70)

with

Vee = 1√
zz̄ + αl2

B

(71)

VA = 1

2
ω2zz̄

(
1 − ω2l2

B

ωc

)
(72)

VB = ω2l2
B

ωc

zz̄(
zz̄ + αl2

B

)3/2 (73)

VC = − l2
B

2ωc

zz̄(
zz̄ + αl2

B

)3 (74)

VD = 27

8

(
n +

1

2

)
l4
B

ωc

(zz̄)2(
zz̄ + αl2

B

)5 . (75)

Vee denotes the bare electron–electron interaction (unscreened or screened Coulomb potential).
The correction (VA) due to the coupling to other Landau levels results in a renormalization of
the frequency of the harmonic potential, which corresponds to the first-order correction of the
expansion of the exact renormalized frequency ω̃rel. The second correction (VB) represents
a renormalization of the electronic charge of the Coulomb potential. It emerges from the
cross-term between the Coulomb and the harmonic potential. Without the magnetic shielding
(equation (69)) higher order corrections would result in terms more singular than the original
Coulomb potential and are proportional to r−4 and r−6. Consequently energy corrections due
to these potentials would be only non-diverging for states with higher angular momenta where
a high centrifugal barrier prevents a high density of the wavefunction at small r.

The Schrödinger equation (equation (47)) in complex-coordinate representation should
be solved with equation (70) as perturbation. Analytic expressions can be found only for
the limiting case α = 0 of a pure Coulomb potential. The wavefunctions in the Bargmann
representation are given by f m

n = zn−m, where n labels the Landau level and m the eigenvalue
m of the angular momentum lz. Because of the analyticity of the wavefunction in the Bargmann
representation we get the constraint n � m. The Landau quantum number n is related to m
through n = nr + 1

2 (|m| + m), where nr � 0 denotes the radial quantum number. Each term
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Vj of the renormalized potential of equation (70) then gives an energy correction εj to the
Landau energy 2n+1

2 ωc according to

:
n∑

i=0

(
2l2

B

)i (n
i

)
1

i!

∂2iVj (z, z̄)

∂zi∂z̄i

∣∣∣∣∣
z̄=2l2

B∂z

: zn−m = εj z
n−m j = A,B,C, . . . n � m.

(76)

We find

εA = ω2

ωc

(
1 − ω2

ω2
c

)
(2n − m + 1) (77)

εee + εB =
(

1 +
ω2l2

B

ωc

) (
2l2

B

)−1/2

π

nr∑
j=0

�
(|m| + j + 1

2

)
�
(
j + 1

2

)
�
(
nr − j + 1

2

)
j !(nr − j)!(|m| + j)!

(78)

εC = −mrel

8

(|m| − 2)!(2n − m + 1)

(|m| + 1)!
|m| � 2 (79)

εD = 27mrel
(2n + 1)

28

(nr + 2)!(|m| − 3)!

|m|!nr !

[
1 − 2nr(|m| − 2)

(|m| + 1)(nr + 2)

+
2nr(nr − 1)(|m| − 2)(|m| − 1)

(|m| + 1)(|m| + 2)(nr + 2)(nr + 1)

]
|m| � 3. (80)

Note that the corrections εC and εD are independent of B. Because of their singular behaviour
they give in the pure Coulomb case a finite contribution only for higher angular momenta.

These analytic energy contributions for the Coulomb potential can be compared to the
numerically determined ones for the screened Coulomb potential. Only for magnetic energies
ωc higher than the energies of the Coulomb potential 1

εaeff
(where aeff is the effective Bohr

radius and ε is the dielectric constant) and the confining potential of the quantum dot ω is
the perturbative expansion expected to converge. We set the scale of the magnetic field B0

through the condition ωc = 1
εaeff

such that for B > B0 the external potential can be considered a
perturbation of the Landau levels. For GaAs semiconductor microstructures with mrel = 0.035
and ε = 13 we get B0 = 3.4 T, which is a typical field strength in quantum Hall experiments
[26]. The strength of the confining potential we choose at ω = 0.1.

Figures 1 and 2 display the relative error of the perturbatively calculated energy levels
for m = −4 and n = 0 for the bare (figure 1) and shielded (figure 2) Coulomb potential. In
each case we show the error as more terms of the series (equations (76)–(80)) are added. As
expected, the relative error approaches zero as B/B0 → ∞. However, the convergence is
non-monotonic as a function of the number of terms included. Moreover, the relative error in
the case of a screened Coulomb potential is always smaller than the error of the unscreened
Coulomb potential at a given B/B0, as expected from the cut-off of the singularity at r = 0.
For the same reason, for a fixed Landau level the relative error decreases with increasing
angular momentum quantum number |m|.

For fixed B/B0 and m, the error increases with increasing Landau quantum number n.
The reason for this behaviour is that the radial wavefunction acquires an increasing number
of nodes nr thereby pushing a portion of probability towards r = 0. This, in turn, increases
the weight of the terms VC and VD containing high inverse powers in r. Higher order terms
beyond VD are expected to increase the error. We therefore expect the perturbation series to
be asymptotic. Nevertheless, we find that for moderate Landau quantum numbers n low-order
perturbation leads to excellent agreement with the exact calculation for B/B0 > 1.
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Figure 1. Relative error 
E/E of perturbatively calculated energy for the lowest Landau level
n = 0 and angular momentum m = −4 as a function of the magnetic field B in units of B0 for the
bare Coulomb potential (α = 0). Shown are sums over different terms of the perturbation series.
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Figure 2. As figure 1, however for a screened Coulomb potential (α = 1).

5. Conclusion

We have developed the Bargmann representation of the two-dimensional Schrödinger equation
for an electron in a homogeneous perpendicular magnetic field in the presence of sufficiently
smooth (disorder) potential for arbitrary Landau levels n. By projection onto the subspace of
several Landau levels, an effective Schrödinger equation in terms of a set of coupled channel
equations, which describe mixing effects of different Landau levels in this subspace, has
been constructed. Projecting onto a single Landau level results in the quasi-one-dimensional
Schrödinger equation for the drift motion of the guiding centre in an effective potential which,
in general, depends on the Landau level index.

We have shown that the single-channel wavefunction for an arbitrary Landau level of index
n is determined by a single analytic function fn(z). For the lowest Landau level this method
reduces to the well-known differential-equation of Girvin and Jach [8]. Furthermore, we have
derived the strong-field solution of the single-channel Schrödinger equation in analogy to the
conventional WKB approximation. In the present case, the magnetic length lB rather than the
de Broglie wavelength is the expansion parameter. In contrast to conventional semiclassical
approaches our energy spectrum includes Maslov corrections from the outset.

We have applied the present formalism to Landau level mixing and levitation. We have
shown the close correspondence between the perturbative solution of the coupled-channel
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equations and the renormalized potential introduced by Haldane and Yang [9]. We find the
dominant weak levitation effects of extended states for the integer quantum Hall effect to be
proportional to B−3.

Further we investigated the electron–electron interaction in terms of a perturbative
expansion in orders of B−1, for a parabolic two-electron quantum dot in a magnetic field. We
compared the perturbative solution with the exact solution of the problem. The perturbative
approach is in good agreement with the exact solution for moderate Landau quantum numbers
n and angular momenta m in a magnetic field regime accessible in quantum Hall experiments.
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Appendix. Generalization of Bargmann’s integral

We consider the integral

1

2πl2
B

∫
dξ dξ̄ e

− 1
2l2

B

ξ̄(ξ−z)
V (ξ, ξ̄ )F (ξ, z)

:= 1

2πl2
B

∫ ∞

−∞
dξx

∫ ∞

−∞
dξy e

− 1
2l2

B

(ξx−iξy )[(ξx+iξy)−z]
V (ξx, ξy)F (ξx + iξy, z) (A.1)

where ξ = ξx + iξy, ξ̄ = ξx − iξy and z is an arbitrary point in the complex plane. This integral
is a generalization of Bargmann’s integral [7]

1

2πl2
B

∫
dξ dξ̄ e

− 1
2l2

B

ξ̄(ξ−z)
f (ξ) = f (z). (A.2)

We calculate (A.1) for arbitrary potential functions V (ξ, ξ̄ ) with the restriction that they can
be expanded in a series of positive powers of ξ and ξ̄

V (ξ, ξ̄ ) =
∑

n=0,m=0

anmξnξ̄m. (A.3)

In the following we will assume the function F(ξ, z) to be analytic in the complex variable
ξ . We will prove that under these conditions, the generalization of Bargmann’s integral
equation (A.1) yields

1

2πl2
B

∫
dξ dξ̄ e

− 1
2l2

B

ξ̄(ξ−z)
V (ξ, ξ̄ )F (ξ, z) = :V

(
ξ, 2l2

B

d

dξ

)
: F(ξ, z)

∣∣∣∣
ξ=z

. (A.4)

To prove equation (A.4) we insert the power series expansion of V . Noting that

ξ̄m e
− 1

2l2
B

ξ̄(ξ−z) = (−2l2
B

∂
∂ξ

)m
e
− 1

2l2
B

ξ̄(ξ−z)
equation (A.1) reads

1

2πl2
B

∑
n,m

anm

∫ ∫
dξ dξ̄F (ξ, z)ξnξ̄m e

− 1
2l2

B

ξ̄ (ξ−z)

= 1

2πl2
B

∑
n,m

anm

∫ ∫
dξ dξ̄F (ξ, z)ξn

(
−2l2

B

∂

∂ξ

)m

e
− 1

2l2
B

ξ̄(ξ−z)
. (A.5)
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After partial integration we get for equation (A.5)

1

2πl2
B

∑
n,m

anm

∫ ∫
dξ dξ̄ e

− 1
2l2

B

ξ̄(ξ−z)
[(

2l2
B

∂

∂ξ

)m

ξnF (ξ, z)

]
. (A.6)

The expression
∑

n,m anm

(
2l2

B
∂
∂ξ

)m
ξn = :V

(
ξ, 2l2

B
∂
∂ξ

)
: is the normal-ordered potential, where

all derivatives are kept at the left, having replaced the complex variable ξ̄ by the operator
2l2

B
∂
∂ξ

. Equation (A.1) becomes

1

2πl2
B

∫ ∫
dξx dξy e

− 1
2l2

B

ξ̄(ξ−z)
:V

(
ξ, 2l2

B

∂

∂ξ

)
: F(ξ, z). (A.7)

Since F(ξ, z) was assumed analytic in ξ and :V
(
ξ, 2l2

B
∂
∂ξ

)
: is an operator on the Hilbert space

of analytic functions (Bargmann space), the resulting function :V
(
ξ, 2l2

B
∂
∂ξ

)
: F(ξ, z) is an

analytic function f (ξ) in ξ and the integral (A.7) reduces to Bargmann’s integral (A.2), which
applied gives equation (A.4).
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